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ABSTRACT

Random forests is a classification and regression algorithm originally designed for the machine learning  
community. This algorithm is increasingly being applied to satellite and aerial image classification and the  
creation of continuous fields data sets, such as, percent tree cover and biomass. Random forests has several  
advantages when compared with other image classification methods. It is non-parametric, capable of using  
continuous and categorical data sets, easy to parametrize, not sensitive to over-fitting, good at dealing with  
outliers  in  training  data,  and it  calculates  ancillary  information  such  as  classification error  and variable  
importance. This paper provides an overview of the random forests algorithm including how it works, and  
advantages and limitations. 

1. INTRODUCTION

The conversion of radiance data, recorded by a sensor, to other variables, such as land 
cover type, forest biomass, or percent tree cover, is one of the most common remote sensing 
tasks. Before the satellite era of remote sensing aerial photographs were interpreted manually. 
As the digital age and satellite remote sensing began, so did an effort, that continues today, to 
develop robust and efficient computer algorithms to process remotely sensed digital imagery. 

In recent years a number of algorithms developed for machine learning have been 
adopted for remote sensing applications. These include neural networks, support vector 
machines, boosting, and random forests. Traditionally, remote sensing classification methods 
rely on statistical models to determine how radiance values recorded by a sensor should be 
grouped into a number of categories or classes (e.g., land cover type). These statistical 
approaches work on the assumption that an appropriate data model is being used and 
parameters for the model can be approximated from the data (Elith et al. 2008). For example, 
when using the maximum likelihood classifier the model assumes that the image data for 
each class and therefore the training data used to parameterize the model are normally 
distributed. A machine learning approach, on the other hand, does not start with a data model 
but instead learns the relationship between predictor and response data (L. Breiman 2001). 
By removing the need for data to fit a specific model, machine learning algorithms offer the 
opportunity to incorporate a diverse variety of data layers in addition to image data (e.g., 
digital elevation models, soil type, and climate data) into the classification algorithm.

2. RANDOM FORESTS

The random forests algorithm is a machine learning technique that is increasingly being 
used for image classification and creation of continuous variables such as percent tree cover 
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and forest biomass. Random forests is an ensemble model which means that it uses the results 
from many different models to calculate a response. In most cases the result from an 
ensemble model will be better than the result from any one of the individual models 
(Dahinden 2009). In the case of random forests, several decision trees are created (grown) 
and the response is calculated based on the outcome of all of the decision trees. 

2.1 Decision trees

In order to understand how random forests works it is necessary to become familiar 
with decision trees. Decision trees are predictive models that use a set of binary rules to 
calculate a target value. Two types of decision trees are classification trees and regression 
trees. Classification trees are used to create categorical data sets such as land cover 
classification and regression trees are used to create continuous data sets such as biomass and 
percent tree cover.

Figure 1 shows a very simple classification tree and the resulting land cover map 
creating using the red (band 3) and near-infrared (band 4) bands from the Landsat Enhanced 
Thematic Mapper Plus satellite sensor as the predictor variables. The tree is a set of binary 
decisions and terminal nodes connected by branches (lines in the figure). The first (top) 
decision node, also called the root node, evaluates the rule “is band 4 less than or equal to 
46”. If it is then a terminal node is reached and that node is assigned to the class “water”. If 
band 4 is greater than 46 then another binary decision node is evaluated; “is band 3 less than 
or equal to 102”. The tree continues to grow until all branches end with terminal nodes. 

Figure 1. A classification tree (left) and the resulting land cover map (right)

If the tree in Figure 1 were a regression tree the terminal nodes would contain predicted 
function (modeled) values such as biomass or whatever continuous response variable is being 
modeled.  

Using a binary decision tree to classify an image using greater than or less than rules 
with continuous data results in the partitioning of feature space using n-dimensional 
rectangles (Figure 2). In Figure 2 the two-dimensional feature space plot is partitioned using 
a set of two-dimensional rectangles based on the classification tree on the left. This is a very 
simplistic classification tree. When several predictor variables are used the tree and the 
resulting partitioning of the feature space would be significantly more complex with many 
more rectangles. Using categorical data, such as soil type, as a predictor variable would also 
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result in a more complex feature space plot. One of the drawbacks of using decision trees is 
that rectangles are rarely an effective way to partition feature space.

Figure 2. A classification tree (left) and resulting partitioned feature space plot (right)

Another drawback of decision trees is that they tend to over-fit the training data which 
can give poor results when the model is applied to the full data set. This happens when the 
tree grows too large with the terminal nodes representing very small subsets of the training 
data. To overcome this problem a process call “pruning” is used to simplify the tree by 
removing terminal nodes that could be linked to noise in the data. This will reduce the effects 
of over-fitting and improve the predictive power of the model. The problem is that the 
pruning process is somewhat subjective and it can be cumbersome to prune a tree so it gives 
the lowest error for a set of test data. 

Some advantages of using decision for image classification or regression applications 
are:

• Easy to interpret the rules using a tree diagram;
• It is a nonparametric model and it is easy to incorporate a range of numeric or 

categorical data layers;
• No need to select training data with a unimodal distribution; and
• Classification is fast once the rules are developed.

2.2 How random forests works

Random forests, like decision trees, can be used to solve classification and regression 
problems but it is able to overcome the drawbacks associated with single decision trees while 
maintaining the benefits. The random forests model calculates a response variable (e.g., land 
cover, percent tree cover) by creating many (usually several hundred) different decision trees 
(the forest of trees) and then putting each object to be modeled (in our case the object is a 
multi-layered pixel) down each of the decision trees. The response is then determined by 
evaluating the responses from all of the trees. In the case of classification the class that is 
predicted most is the class that is assigned for that object (Leo Breiman & Cutler A.). In other 
words, if 500 trees are grown and 400 of them predict that a particular pixel is forest and 100 
predict it is grass the predicted output for that pixel will be forest. In the case of regression 
the resulting value for an object is the mean of all of the predictions. Since predictions from 
random forests are derived using a forest of trees it is not possible to easily illustrate how the 
predictions are made. To illustrate the process it would be necessary to draw all of the trees 
for each prediction which would result in hundreds of decision tree diagrams for each model. 
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The key to the success of random forests is how it creates each of the decision trees that 
make up the forest. There are two steps involving random selection that are used when 
forming the trees in the forest. The first step involves randomly selecting, with replacement, 
data from supplied training areas to build each tree. For each tree a different subset of the 
training data are used to develop the decision tree model and the remaining one-third of the 
training data are used to test the accuracy of the model. The sample data used for testing are 
often called the “out-of-bag” samples. The second random sampling step is used to determine 
the split conditions for each node in the tree. At each node in the tree a subset of the predictor 
variables is randomly selected to create the binary rule. The number of predictor variables 
that are randomly selected can be set by the user or the choice can be left to the random forest 
algorithm. Using a randomly selected subset of the predictor variables to split each node 
results in less correlation among trees and as a result a lower error rate. If all of the variables 
were used for each tree the trees would be nearly identical (highly correlated), which would 
result in a higher error rate (L. Breiman 2001). Although smaller subsets of predictor 
variables will reduce correlation between trees it also results in trees with less predictive 
power than trees built using more predictor variables. It is important to select the number of 
variables that provides sufficiently low correlation with adequate predictive power. 
Fortunately, the optimum range for the subset of predictor variables is quite wide and there 
are easy tests that can be performed to select an optimum subset size (Pal 2005).

When running random forests there are a number of parameters that need to be 
specified. The most common parameters are (Liaw & Wiener 2002):

• Input training data including predictor variables such as image bands and digital 
elevation models and response variables such as land cover type and biomass;

• The number of trees that should be built;
• The the number of predictor variables to be used to create the binary rule for each 

split; and
• Parameters to calculate information related to error and variable significance.

2.3 Error reporting, variable significance, and outliers

One of the tremendous benefits of random forests is that it is able to calculate useful 
information about errors, variable importance, and data outliers. This information can be used 
to evaluate the performance of the model and make changes to the training data if necessary. 

Since random forests only uses roughly two-thirds of the training data to build the random 
forests model the remaining one-third of the training data (the out-of-bag samples ) can be 
used to estimate the error of the predictions. This greatly simplifies the accuracy assessment 
portion of each analysis. Another related feature is the ability to plot the error rate vs. the 
number of trees in a forest. This plot can give an indication if the number of trees in the forest 
is sufficient. If the error rate is stable the number of trees should be sufficient. 

Variable importance is also provided by the random forests algorithm. By identifying 
variables that contribute little information to the analysis, it is possible to re-run the model 
without those variables. This can be particularly important if several dozens of variables are 
used. The determination of variable importance is accomplished for each tree by randomly 
reordering the values of a single predictor variable in the out-of-bag samples and then putting 
the samples down each tree and repeating this process for each predictor variable. In effect, 
this reordering substitutes a predictor variable for a particular pixel with a predictor variable 
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from another pixel. For example, if there are 100 out-of bag samples and each sample has 6 
predictor variables, (e.g., satellite image bands) randomly reorder all values of the first 
predictor variable (e.g., band one) and then run those samples through the tree. This will 
create the case where the values for the band one variable is mixed up so, for example, an 
out-of-bag sample from a forest pixel could have a band one value from a water pixel. 
Repeat this for all of the predictor variables (e.g., all bands) for that tree and then repeat the 
whole process for all of the trees in the forest. By measuring how much  the model prediction 
changes, it is possible to estimate the importance of that variable (L. Breiman 2001). In other 
words, if the model prediction is greatly impacted by replacing a valid variable with one from 
another pixel then it can be assumed that the variable is quite important but if the prediction 
is not effected much then the variable has little impact on the predicted value. 

It is also possible to evaluate outliers in the training data if a classification model is 
being used. Outliers are data that are not very similar to other data for a particular class. For 
example, with sample data for a forest class there might be some pixels that represent non-
forest mixed in with the forest pixels. By identifying which classes have significant outliers it 
becomes possible to re-evaluate the training data to see if it is necessary to edit the samples. 

2.4 Advantages and limitation

There are a number of advantages to using random forests. It has been found to be 
comparable to other machine learning algorithms such as boosting, and support vector 
machines but with the advantage that random forests is not very sensitive to the parameters 
used to run it and it is easy to determine which parameters to use (L. Breiman 2001). 
Overfitting is less of an issue than it is with individual decision trees and there is no need for 
the cumbersome task of pruning the trees. Lastly, the ability of automatically producing 
accuracy and variable importance and information about outliers makes random forests easier 
to use effectively. 

There are some limitations when using random forests, especially when using it for 
regression. Due to the way regression trees are constructed it is not possible to predict beyond 
the range of the response values in the training data. For example, if the training data for a 
biomass model contain low and moderate biomass values but no high values it will not be 
possible to accurately predict high biomass values when the model is applied to the full data 
set. It is extremely important that the training data include samples that cover the entire range 
of response data values.  

Another issue related to regression is that random forests tends to overestimate the low 
values and underestimate the high values. This is because the response from random forests 
in the case of regression is the average (mean) of all of the trees. 

3. PRACTICAL RESOURCES

There are a number of freely available resources that are useful to implement the 
random forest algorithm. The most important is software to run random forests. There is a 
package called “randomForest” that can be run using the open source software “R” (R 
Development Core Team 2009). R is a software environment for statistical computing and 
graphics that runs on most computer platforms including Linux, Mac OS, and Microsoft 
Windows. The randomForest package (Liaw & Wiener 2002) available for R is a full-
featured implementation of the random forests algorithm and it comes complete with 
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documentation and example data. 

To facilitate using random forest for image classification and regression and number of 
guides have been developed and are available on the American Museum of Natural History's 
Center for Biodiversity and Conservation  Biodiversity Informatics Facility web site: 
http://biodiversityinformatics.amnh.org/. These guides provide detailed information about 
how to use random forests for creating land cover, biomass, and percent cover maps using 
satellite imagery. Scripts are provided with the guides to make is easy to implement random 
forests for image classification and regression.

A good website to better understand the details of the random forests algorithm is the 
site developed by the man who developed the algorithm, Leo Breiman 
(http://www.stat.berkeley.edu/~breiman/RandomForests/). Another document written by Leo 
Breiman that describes random forests is the manual for setting up and usnig his original 
implementation (http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf).  

4. CONCLUSION

Random forests is a robust algorithm that can be used for remotely sensed data 
classification and regression. Performance of random forests is on par with other machine 
learning algorithms but it is much easier to use and more forgiving with regard to over fitting 
and outliers than other algorithms. Some common applications of random forests 
classification include land cover and land cover change mapping and cloud and shadow 
detection. Regression applications include continuous filed mapping (e.g., percent tree cover, 
percent shrub cover, impervious surfaces) and biomass mapping. At this point in time, 
random forests is gaining in popularity but it is still not a common approach for image 
classification and regression largely because many remote sensing practitioners are unaware 
of the algorithm. 
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